The Piecewise Smooth Mumford-Shah Functional on an Arbitrary Graph
نویسندگان
چکیده
The Mumford-Shah functional has had a major impact on a variety of image analysis problems, including image segmentation and filtering, and, despite being introduced over two decades ago, it is still in widespread use. Present day optimization of the Mumford-Shah functional is predominated by active contour methods. Until recently, these formulations necessitated optimization of the contour by evolving via gradient descent, which is known for its overdependence on initialization and the tendency to produce undesirable local minima. In order to reduce these problems, we reformulate the corresponding Mumford-Shah functional on an arbitrary graph and apply the techniques of combinatorial optimization to produce a fast, low-energy solution. In contrast to traditional optimization methods, use of these combinatorial techniques necessitates consideration of the reconstructed image outside of its usual boundary, requiring additionally the inclusion of regularization for generating these values. The energy of the solution provided by this graph formulation is compared with the energy of the solution computed via traditional gradient descent-based narrow-band level set methods. This comparison demonstrates that our graph formulation and optimization produces lower energy solutions than the traditional gradient descent based contour evolution methods in significantly less time. Finally, we demonstrate the usefulness of the graph formulation to apply the Mumford-Shah functional to new applications such as point clustering and filtering of nonuniformly sampled images.
منابع مشابه
On the Statistical Interpretation of the Piecewise Smooth Mumford-Shah Functional
In region-based image segmentation, two models dominate the field: the Mumford-Shah functional and statistical approaches based on Bayesian inference. Whereas the latter allow for numerous ways to describe the statistics of intensities in regions, the first includes spatially smooth approximations. In this paper, we show that the piecewise smooth Mumford-Shah functional is a first order approxi...
متن کاملReal-Time Minimization of the Piecewise Smooth Mumford-Shah Functional
We propose an algorithm for efficiently minimizing the piecewise smooth Mumford-Shah functional. The algorithm is based on an extension of a recent primal-dual algorithm from convex to non-convex optimization problems. The key idea is to rewrite the proximal operator in the primal-dual algorithm using Moreau’s identity. The resulting algorithm computes piecewise smooth approximations of color i...
متن کاملEfficient Segmentation of Piecewise Smooth Images
We propose a fast and robust segmentation model for piecewise smooth images. Rather than modeling each region with global statistics, we introduce local statistics in an energy formulation. The shape gradient of this new functional gives a contour evolution controlled by local averaging of image intensities inside and outside the contour. To avoid the computational burden of a direct estimation...
متن کاملFast Segmentation for the Piecewise Smooth Mumford-Shah Functional
This paper is concerned with an improved algorithm based on the piecewise-smooth Mumford and Shah (MS) functional for an efficient and reliable segmentation. In order to speed up convergence, an additional force, at each time step, is introduced further to drive the evolution of the curves instead of only driven by the extensions of the complementary functions + u and − u . In our scheme, furth...
متن کاملDiscrete Optimization of the Multiphase Piecewise Constant Mumford-Shah Functional
The Mumford-Shah model has been one of the most powerful models in image segmentation and denoising. The optimization of the multiphase Mumford-Shah energy functional has been performed using level sets methods that optimize the Mumford-Shah energy by evolving the level sets via the gradient descent. These methods are very slow and prone to getting stuck in local optima due to the use of the gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
دوره 18 11 شماره
صفحات -
تاریخ انتشار 2009